FIRST SYNTHESIS OF 1.2-DIHYDRO $1.2 - \lambda^3$ -AZAPHOSPHORINES

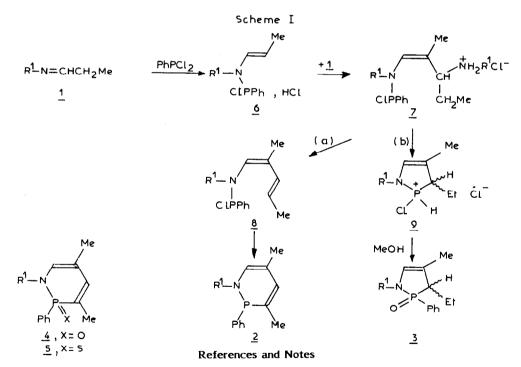
Catherine Bourdieu and André Foucaud

Groupe de Physicochimie Structurale associé au C.N.R.S., Université de Rennes, Campus de Beaulieu, 35042 Rennes, France.

Abstract - 1,2-dihydro 1,2- λ^3 -azaphosphorines were prepared by reaction of dichlorophenylphosphine with two equivalents of imines derived from propanal. In some cases, 2-oxo 1,2-azaphospholenes were also obtained.

A few examples of 1,4-dihydro 1,4- λ^3 -azaphosphorines are known 1^{-3} ; they are precursors of $1,4-\lambda^3$ -azaphosphorines ². The 1,2-dihydro $1,2-\lambda^3$ -azaphosphorines are not yet known. We describe here the first preparation of these compounds.

In 1981, Nurtdinov et al. ⁴ reported that the reaction of dichlorophosphines with aliphatic N-butylimines led to the 2-oxo 1,2-azaphospholenes. We have reexamined this reaction and we have found that the reaction of $PhPCl_2$ with imines 1 gave the azaphosphorines 2 5 when R_1^1 = t.Bu or t.Bu.CH₂CMe₂- or a mixture of **2** and 2-oxo 1,2-azaphospholenes **3** when $R^{1} = iPr$, PhCH₂ or iPr-CH₂ (table). Treatment of 2 with H₂O₂ resulted in good yields of 4. The azaphosphorines 2 were converted into the crystalline sulfides 5 by reaction with sulfur. The structures of the products were deduced from their spectral properties (1 H, 31 P, 13 C NMR and mass spectra).


4, R^{1} = t.Bu, m.p. 142°C (AcOEt), $\delta^{31}P = 18.0$; 4, $R^{1} = iPr$, m.p. 120°C (AcOEt) $\delta^{31}P = 19.0$. 5, R^{1} = t.Bu, m.p. 130°C (AcOEt/EtOH), $\delta^{31}P = 51.3$; 5, $R^{1} = iPr$, m.p. 115°C (AcOEt/EtOH) $x^{31}P = 55.8$.

The formation of 2 and 3 can be visualized as represented in scheme I. In a first step, the nucleophilic attack of 1 on PhPCl₂ gave an enamine 6 which can add on a second mole of imine 1 to yield 7^5 . When R^1 provided a sufficient steric hindrance, the elimination of $R^1 NH_2$ from 7, with formation of 8 was fast. The dienamine 8 cyclized into 2 (pathway (a)). When the pathway (a) was slow, the displacement of R¹NH₂ by nucleophilic attack of the phosphorus atom occured (pathway (b)). The intermediate 9 was obtained ; treated with MeOH, 9 gave the azaphospholene 3.

R ¹	ьр _{0.02} ;С	Yield,%	¹ Η NMR,(CDCl ₃)δ(J _{PH} ,Hz)				³¹ P NMR
			Me-3	H-4	Me-5	H6	(CDCl ₃ , δ)
t.Bu	120-125	64	2.11 (16)	6.36 (9.6)	1.81	6.12	4.4
t.Bu.CH ₂ .CMe ₂	138-140	47	2.07 (16)	6.31 (9.6)	1.83	6.12	
i.Pr ^a	115-118	41	2.10 (16)	6.38 (10)	1.80	5.93	15.4
PhCH ₂ ^a	150-153	30	2.04 (14)	6.44 (11)	1.73	5.77	
i.Pr.CH ₂ a	125-130	10	2.03 (11)	6.39 (10)	1.80	5.78	5.4

Table - Selected NMR spectral data of azaphosphorines 2.

a. Yield of 2: 20-30 %.

- 1 Williams J. C. Jr.; Kuczkowski, J.A.; Portnoy, N.A.; Yong, K.S.; Wander, J.D.; Aguiar, A.M. Tetrahedron Lett. 1971, 4749.
- 2 Märkl, G. ; Matthes, D. Angew. Chem. Int. Ed. Engl. 1972, 11, 1019.
- 3 Skolinowski, J.; Simalty, M. Synthesis, 1979, 109.
- 4 Nurtdinov, S. Kh.; Tsivunina, I.V.; Savran, V.I.; Ismagilova, N.M.; Zykova, T.V.; Tsivunin, V.S. Zh. Obshch. Khim. 1981, <u>51</u>, 1549, Chem. Abst. 1982, <u>96</u>, 20177.
- 5 A solution of PhPCI₂ (15 mmol) in dry benzene was added to a solution of imine 1 (30 mmol) in benzene (30 ml). The mixture was stirred for 5 h at 20°C. NEt₃ (30 mmol) and MeOH (30 mmol) in benzene were added, the mixture was stirred for 5 h, then filtered and the solution was washed with 1M HCL 2 was purified by distillation.
- 6 Layer, R.W. Chem. Rev. 1963, 63, 489. Pfau, M.; Ughetto-Monfrin, J. Tetrahedron, 1979, 35, 1899.

(Received in France 6 July 1986)